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SUMMARY

Moment transport methods are being developed to model poly-dispersed multiphase flows by transporting
statistical moments of the particle size–velocity joint probability density function (JPDF). A common
feature of these methods is the requirement to reproduce or approximate the form of the JPDF from the
transported moments for calculation of body force terms and other source terms. This paper examines
the application of a maximum entropy technique against phase Doppler anemometry data sets from an
electrostatically charged kerosene spray and also an automotive pressure swirl atomizer. An assessment of
which moments are required to reproduce the JPDFs using a maximum entropy assumption to a sufficient
level of accuracy is made. It is found that it is possible to reproduce the JPDFs to a high level of accuracy
using a large number of moments; however, this incurs large computational overheads. If the moments to
be transported are chosen on the basis of physical reasoning (such as the relationship between size and
velocity due to drag) it is possible to reduce the number of moments to those which would be conserved
via balance equations. This permits an approximation to the JPDF commensurate with the closure level
of the moment transport method and thus the closure model method is naturally scalable with the degree
of information from available conservation equations. Copyright q 2008 John Wiley & Sons, Ltd.
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INTRODUCTION

Dispersed multiphase flows are described by the transport of mass, momentum and energy in
the form of particles dispersed within a gas or liquid carrier phase. Individual single component
particles within a dispersed multiphase flow are characterized by their position, velocity, diameter
and temperature at any point in time. In a typical industrial application (such as diesel injection
in an internal combustion engine) the flow may consist of millions of particles, which interact
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with each other and with the carrier phase. The high dimensionality and large range of scales
induce complex phase transfer interactions and provide many challenges for engineers attempting
to predict these flows computationally.

Microscopic methods attempt to model the full range of length and time scales present in the
flow [1]. For the carrier phase this requires time and length scales resolved down to the Kolmorgorov
scales. For the dispersed phase this requires adequate resolution of the gradients at the particle
surface. Macroscopic methods involve only moments of the variables and hence much information
needs to be reconstructed, ideally in a realizable manner, to provide conservation equations [2].
For a turbulent carrier phase a suitable model, such as the established eddy viscosity [3] (closure
level of the Reynolds stresses) or second moment (closure at the triple correlations) methods, is
required [4]. Mesoscopic methods attempt to capture the larger-scale features of the flow and model
the smaller time and length scales, which consume the majority of the computational resources
in these high-dimension problems. For the carrier phase large eddy simulation (LES) [5] is an
example of a mesoscopic approach, similarly the point particle approximation [6] is a dispersed
phase example.

In principle it is possible to resolve poly-dispersed two phase flows microscopically if appropriate
boundary, initial and interface conditions are selected to completely describe the physical situation.
If such an approach was adopted the carrier phase would be modelled using the Navier–Stokes
equations and the discrete particle surfaces could be modelled as moving boundaries.

It is typical to make a continuum approximation for the carrier phase and to model the turbulence
with either a mesoscopic (LES) or a macroscopic (RANS) assumption. For the discrete phase
one can either directly approximate the particle population using a Lagrangian stochastic ‘packet’
approach [7] or use a continuum Eulerian approximation [8]. For the Lagrangian approach, whole
particles are modelled as points, along with assumptions regarding mass momentum and energy
exchange integrated over the particle surface. Employing a continuum approximation, in addition
to the point particle assumption one must also define phase transport coefficients. Clearly the
Lagrangian approach permits a direct approximation of the evolution of the particle population
and in the present context is mesoscopic, whereas the Eulerian approach evolves moments of the
particle population and is, in the present context, macroscopic.

While providing a direct approximation to the particle population, albeit at a point particle level,
the Lagrangian approach is inherently time dependent and can be costly to account for all particle
timescales. In addition, due to the stochastic nature of the Lagrangian particle modelling method
it is necessary to obtain an ensemble of realizations in order to obtain statistically meaningful
solutions. Finally it is difficult to accommodate dense particle regimes within this framework.
Therefore, while the Lagrangian approach may seem an obvious approach to use to describe a
particle population, there are some limitations and large computation times are usually required.

Until recently fully Eulerian methods for multiphase flow were dominated by the two-fluid
approach [8, 9] in which a set of phase-averaged continuum equations representing conservation
of mass, momentum and energy are derived. The equations were obtained by averaging the
particle instantaneous equations over all realizations. This results in several closure issues that
were normally resolved by appealing to empirical reasoning, once again established firstly for
single-phase turbulence modelling [10].

In the case of poly-disperse dispersed particulate flows, the particle size distribution can be
discretized into size ‘bins’ and Eulerian continuum equations can be written for each size class
with appropriate exchange terms. Methods that do not bin the particle diameter dimension are
relatively rare [11–19].
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Eulerian multiphase models based on stochastic Lagrangian methods [20] provide a firm math-
ematical basis for development. In this approach the continuum equations are derived from a
transport equation for the probability density function (PDF) in particle phase space [21–24]. The
principal advantage in this ‘Lagrangian PDF approach’ is that enables a rigorous transition from a
stochastic mesoscopic description of individual particles within the flow, to an ensemble averaged
macroscopic description of the particle phase as a whole. The approach guarantees that the family
of equations, the size of which is governed by the closure level, are all internally consistent and
the solution obtained from the equation family is realizable, providing any additional sources are
also approximated consistently.

PHASE-SPACE DESCRIPTION

If a statistical description [24] is adopted for multiphase flows then the phase-space variables that
characterize the flow are associated with a probability distribution functions (PDF) at any particular
point in space and time. For example, the nth particle of the dispersed phase can be described in
terms of particle velocity U (n)

i , position X (n)
i , and particle diameter �(n) with corresponding phase

space variables ui , xi , and �. Ensemble averaging of this density function over all realizations
results in the definition of the PDF. The Klimontovich fine grained phase-space density function
at time t [25, 26] corresponding to these variables is then given as

f p(ui ,�, xi ; t)=
N∑

n=1
�(xi −X (n)

i )�(ui −U (n)
i )�(�−�(n)) (1)

Defining a particle volume fraction, �p, may be combined to provide a mass density function
defining within a phase-space volume of dimensions, dxi d�dui centred on xi , �, and ui :

Fp(ui ,�, xi ; t)dxi d�dui =�p(xi ; t) f p(ui ,�, xi ; t)dxi d�dui (2)

Using the definition of the PDF and the Lagrangian equations for the trajectories of the particle
properties, it is possible to derive a transport equation for the particle PDF through phase space.
This is analogous to the derivation of the Boltzmann equation from gas kinetic theory. Ignoring
source terms for collisions, break up, the evolution of the FDF through phase space for a non-
vaporizing/condensing liquid is defined as

�F
�t

+ �
�xi

(Fui )+ �
�ui

(Fai )=0 (3)

From the PDF equation one can either compute the evolution of the PDF directly through
phase space or derive transport equations for moments of the PDF, which represent measurable
statistical quantities. For the phase-space variables, we have selected above, the first technique
requires simulation in a seven-dimensional phase-space domain in addition to time.

We have chosen to follow the non-sectional route as proposed but not followed by Archam-
bault [11] and to write conservation equations up to and including the triple correlations, which
include the diameter as a variable. Table I lists the transported variables, and unclosed drift,
coupling and moments higher than order three that require modelling. Clearly this set of equations
constitutes a very large problem in both degrees of freedom and terms requiring closure. Indeed,
if the complete model was to be implemented up to a second-order level of description plus the
equation for 〈�′

p�
′
p�

′
p〉, this would require a numerical solution to 47 implicit transport equations
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Table I. Conserved variables and unclosed terms.

Variable Drift Coupling Quartic
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p→ f,i

〈� f 〉 〈A f,i 〉 S
〈� f 〉
p→�,i

〈u p,i 〉 〈Ap,i 〉
〈us,i 〉 〈As,i 〉 S

〈us,i 〉
p→s,i

〈�p〉 〈Ap,i 〉
〈u′

f,i u
′
f, j 〉 〈A f,i u

′
f, j 〉 S

〈u′
f,i u

′
f, j 〉

p→ f,i j

〈u′
p,i u

′
p, j 〉 〈Ap,i u

′
p, j 〉

〈u′
s,i u

′
p, j 〉 〈As,i u′

p, j 〉, 〈Ap, j u
′
s,i 〉 S

〈u′
f,i u

′
p, j 〉

p→s,i j

〈�′
pu

′
p,i 〉 〈Ap,i�

′
p〉

〈u′
s,i u

′
s, j 〉 〈As,i u′

s, j 〉 S
〈u′

s,i u
′
s, j 〉

p→s,i j

〈�′
pu

′
s,i 〉 〈As,i�′

p〉 S
〈�′

pu
′
s, j 〉

p→s,i

〈�′
p�

′
p〉

〈u′
f,i u

′
f, j u

′
f,k〉 〈A f,i u

′
f, j u

′
f,k〉 S

〈u′
f,i u

′
f, j u

′
f,k 〉

p→ f,i jk 〈u′
f,i u

′
f, j u

′
f,ku

′
f,m〉

〈u′
p,i u

′
p, j u

′
p,k〉 〈Ap,i u

′
p, j u

′
p,k〉 〈u′

p,i u
′
p, j u

′
p,ku

′
p,m〉

〈u′
s,i u

′
p, j u

′
p,k〉 〈As,i u′

p, j u
′
p,k〉〈Ap,i u

′
s, j u

′
p,k〉 S

〈u′
s,i u

′
p, j u

′
p,k 〉

p→s,i jk 〈u′
s,i u

′
p, j u

′
p,ku

′
p,m〉

〈�′
pu

′
p, j u

′
p,k〉 〈Ap,i�

′
pu

′
p, j 〉 〈�′

pu
′
p, j u

′
p,ku

′
p,m〉

〈u′
s,i u

′
s, j u

′
p,k〉 〈As,i u′

s, j u
′
p,k〉〈Ap,i u

′
s,i u

′
s, j 〉 S

〈u′
s,i u

′
s, j u

′
p,k 〉

p→s,i jk 〈u′
s,i u

′
s, j u

′
p,ku

′
p,m〉

〈�′
pu

′
s, j u

′
p,k〉 〈Ap,i�

′
pu

′
s, j 〉〈As,i�′

pu
′
p, j 〉 S

〈�′
pu

′
s, j u

′
p,k 〉

p→s,i jk 〈�′
pu

′
s, j u

′
p,i u

′
p, j 〉

〈�′
p�

′
pu

′
p,k〉 〈Ap,i�

′
p�

′
p〉 〈�′

p�
′
pu

′
p,i u

′
p, j 〉

〈�′
p�

′
p�

′
p〉 〈�′
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plus closures for the drift terms and third-order tensors. If the third-order terms are conserved this
requires solution of 83 transport equations. If a monosize simulation is sought, our model simpli-
fies to 34 equations and becomes identical to that proposed by Simonin [2]. There are therefore
two clear advantages for following a non-sectional approach to solving multiphase flow problems
with Eulerian equations. The first is that less transport equations are required. As noted above
our non-sectional result of the Minier and Peirano derivation method [24] requires 83 equations,
including third-order terms. By comparison, taking n size bins for n monosize particle ‘phases’
requires 7+32n equations where the third-order terms are modelled. This shows that even when n
is rather small, say n∼5, the poly-disperse method is more efficient. The second advantage is that
the proposed equation set is closed at the third-order level.

Of course, for every advantage gained a price must be paid. In the context of the proposed
model the price is that the unclosed terms become significantly more complex because of the
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dependence of the particle timescale upon particle diameter. The complexity present is beyond the
capability of a traditional empirical model, correlating a higher-order moment in terms of known,
lower-order ones. What is required is a method to obtain the underlying PDF, based on a set of
known constraints, moments in this case. Unknown moments are then obtained from integrating
over this PDF.

The purpose of the present contribution is to propose a general method to approximate any
source term within this model framework. In particular we focus on the acceleration due to drag
that is realizable and consistent with the closure level of the equation family as a whole.

The acceleration term considered

The model derived in [27], based on [24], features unclosed terms relating to particle drag. For
example, the transport equation for the particle Reynolds stresses, which features the correlation
between particle aerodynamic drag Ap and fluctuating velocity u′

p:

�p�p
Dp

Dt
[〈u′

p,i u
′
p, j 〉] = − �

�xk
[�p�p〈u′

p,i u
′
p, j u

′
p,k〉]

−�p�p〈u′
p,i u

′
p,k〉

�〈u′
p, j 〉

�xk
−�p�p〈u′

p, j u
′
p,k〉

�〈u′
p,i 〉

�xk

+�p�p〈Ap,i u
′
p, j +Ap, j u

′
p,i 〉 (4)

Assuming Stokes drag for a monodisperse population and constant properties, this term can be
expanded as

〈Ap,i u
′
p, j 〉=

1

�
〈(u′

s,i −u p,i )u p, j 〉=
18� f

�p�
2
〈(u′

s,i −u p,i )u p, j 〉 (5)

where � is a function of particle diameter � and us, j is the fluid velocity seen by the particle. For
a monodisperse particle population, the unclosed term is a function of velocity correlations only.
If a poly-disperse description is the objective, again assuming Stokes drag, the unclosed term now
becomes

〈Ap,i u
′
p, j 〉=

〈
(u′

s,i −u p,i )u p, j

�

〉
= 18� f

�p

〈
(u′

s,i −u p,i )u p, j

�2

〉
(6)

and we now require mixed correlations of diameter, sampled fluid velocity and particle velocity.
As demonstrated for Stokes drag, these correlations involve simple integer exponents of the phase-
space variables. Unfortunately if a non-linear drag law (valid for Rep>1) is adopted [28], the
unclosed term then becomes a function of non-integer correlations, where C is the relative speed
between fluid and particle:

〈Ap,i u
′
p, j 〉 =

〈(
1+ Re2/3

6

)
(u′

s,i −u p,i )u p, j

�

〉

= 18� f

�p

〈
(u′

s,i −u p,i )u p, j

�2

〉
+ 3�1/3f �2/3f

�d

〈
(u′

s,i −u p,i )u p, jC2/3

�4/3

〉
(7)
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The above problem highlights one example of the closure problem posed by macroscopic
transport methods for the discrete phase where the particle diameter is not binned. In addition
to this momentum source term, other momentum source terms may exist such those due to lift,
rotation, acceleration, added mass, electrical forces and also terms representing mass and energy
phase transfer. Some if not all of these physical mechanisms are empirically modelled, and many
require non-linear, non-integer moments of several phase-space variables, some of which will not
be available in conserved form via balance equations. Therefore, this issue is the norm rather
than the exception and this present contribution offers an assessment of a general method to
accommodate this problem.

CONSIDERATION OF A GENERAL CLOSURE METHOD

One option is to approximate unknown moments with combinations of known conserved ones, for
instance, approximating 〈	1/2〉 as 〈	〉1/2. This method is not realizable locally or globally and is
not considered further. Another option [14] is to use an assumed joint probability density function
(JPDF). The method has the advantage that all moments are known analytically and is locally
realizable. However, this method has a global realizability issue, in that an assumed PDF that
may be valid at one location in space and time may possibly evolve into a form that violates the
assumption of the PDF at another location. An assumed PDF also is not general in the sense that
if the particle state vector enlarges or contracts on a problem-by-problem basis then the assumed
PDF should also increase or decrease in dimension. This is generally not possible with the assumed
PDF assumption, and therefore attention turns to PDF reconstruction methods.

One option is direct reconstruction [29]; however, extending this method to an arbitrary number
of dimensions would be difficult. Therefore, the method cannot be considered general. Numerous
different approaches have been adopted for various non-equilibrium stochastic systems and these
methods can be classified as either linear or non-linear (a comprehensive discussion can be found
in [30, 31]). Generally, equilibrium distributions are associated with a Maxwellian PDF, whereas
non-equilibrium distributions are associated with PDFs with more complex forms. Linear represen-
tations of the non-equilibrium distribution correspond to a series expansion about the equilibrium
distribution. Probably the most well-known closure of this type is the Chapman–Enskog expan-
sion [32]. An alternative to the Chapman–Enskog expansion is Grad’s representation [33]. Grad
proposed an expansion to the equilibrium velocity distribution using multi-dimensional Hermite
polynomials. Grad performed the expansion to third-order moments to obtain the well-known ‘13
moment expansion’. The fluid dynamics and to a large extent the RANS turbulence modelling
community have proven the usefulness of the near-equilibrium approach. However, the fluid
continuum and the turbulence fields can both rely to a large extent on a continuum hypothesis
and that the ‘equilibrium’ conditions will restore if the driving force is removed. A poly-disperse
phase cannot reliably follow this analogy due to the wide range of timescales present.

We now turn our attention to the non-linear representations for a non-equilibrium distribution.
Probably the simplest of non-linear representations is the joint normal PDF, which does not
conform to spherical symmetry (in contrast to the Maxwellian). The joint normal distribution
suffers from the drawback that all odd-order moments are identically zero. The consequences of
this limitation is that the joint normal PDF cannot represent non-equilibrium phenomena (such as
heat flux) associated with odd-order moments. An alternative approach to generating a non-linear
representation is based on the second characteristic function of the PDF [31]. This method is
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capable of generating distributions with non-zero odd-order moments; however, the method does
not guarantee a realizable PDF in the sense that negative probabilities are possible. In addition to
these methods several specialized techniques have been developed for specific physical phenomena
(e.g. normal shocks [34]).

The non-linear method of interest here is that first utilized by Koopman [35], based on the
concept of information entropy. This technique, known as the maximum entropy method (MEM),
will be outlined in more detail in the following section, but it is essentially based on the concept of
minimizing statistical bias of a JPDF. A JPDF is generated that satisfies a set of input constraints but
makes no further assumption as to the form of the JPDF—the information entropy is maximized.
The MEM (Koopman) method is attractive for several reasons: (i) sound conceptual founda-
tions [36]; (ii) interdependence between even- and odd-order moments; and (iii) non-negative
probabilities.

In summary the linear methods, while simpler in terms of algebraic complexity, are less likely
to produce PDF representations capable of capturing non-equilibrium physics. In addition, these
methods do not guarantee the absence of negative probabilities and hence do not satisfy realizability.
Conversely, non-linear methods suffer from increased algebraic complexity but guarantee realizable
distributions for larger deviations from equilibrium.

THE MAXIMUM ENTROPY METHOD

In 1948 Shannon [37] proposed the concept of information entropy for a discrete probability distri-
bution. The entropy is defined for a group of M mutually exclusive events, each with probabilitypm .
Shannon’s measure of the entropy or uncertainty of the discrete distribution is

H =−C
M∑

m=1
pm ln pm (8)

where C is an arbitrary positive constant. For a set of distribution moments, it is well known that
an infinite set of JPDFs exist, which satisfy the moments. The MEM assumes that for a finite set
of moments (constraints) the best estimate (least biased best guess) of the true JPDF is the one
that maximizes the statistical entropy.

Given a continuous distribution in one dimension f (x), the entropy of the distribution can be
defined as the functional

H [ f (x)]=−
∫ +∞

−∞
f (x) ln[ f (x)]dx (9)

and the distribution conforms to the normalization condition

J0[ f (x)]=
∫ +∞

−∞
f (x)dx=1 (10)

and is subject to additional n constraints defined as

Jn[ f (x)]=
∫ +∞

−∞
gn(x) f (x)dx=〈gn(x)〉 (11)
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The MEM objective is to maximize Equation (9) subject to the constraints prescribed by (10) and
(11). Formulating the problem as an Euler–Lagrange equation, we have [38]{

�
� f

− d

dx

�
� f ′

}[
− f ln[ f ]+
0 f +

N∑
n=1


ngn(x) f

]
=0 (12)

where f ′ =d f/dx and the Lagrange parameters are denoted 
n . The terms inside the square
brackets are not functions of f ′(x); hence, the equation is simplified to

− ln[ f ]−1+
0+
N∑

n=1

ngn(x)=0 (13)

and by absorbing the constant (−1) into the parameter 
0 this becomes

f (x)=exp

[

0+

N∑
n=1


ngn(x)

]
(14)

From Equation (14) it is obvious that for real 
n and gn(x), the PDF f (x) will be non-negative and
the realizability requirements are satisfied. Equation (14) demonstrates that the PDF is completely
specified by the parameters 
0 and 
n , which in turn are associated with each of the constraints
〈gn(x)〉. Equations (10), (11), and (14) form a closed but strongly non-linear set of equations.
Ideally it would be possible to find analytical solutions of the form 
0=
n[〈gn(x)〉] and this has
been the objective of recent research for near-equilibrium PDFs [30, 31]. In the situation under
investigation here, we are interested in PDFs far from equilibrium; hence, a numerical solution is
sought.

NUMERICAL METHOD

The solution of maximum entropy problem can be achieved using the method of Lagrange multi-
pliers; however, this direct calculation requires the solution of a set of implicit non-linear equations.
For problems of several phase-space dimensions with multiple constraints, solutions can be difficult
to achieve and computationally expensive. An alternative to this method is to formulate a varia-
tional solution using the Lagrange multipliers as variational parameters according to the method of
Alhassid et al. [39, 40]. This method requires formulation of a single-valued function F , defined
by a phase domain and constraints, which itself is a function of the Lagrange parameters. The
entropy constraints are expressed in discrete form according to

M∑
m=1

gn(xm)p(xm)=〈gn〉 (15)

where N is the number of constraints and the summation is made over all M discrete positions in
the PDF phase space. Following the method of Alhassid et al. [39, 40] a single-valued function of
the Lagrange parameters is derived:

F= ln
N∑

n=1
exp

(
M∑

m=1
−
n Bm,n

)
(16)
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where

Bm,n =gn(xm)−〈gn〉 (17)

and to achieve maximum entropy this function must be minimized by varying 
n . Once obtained,
the calculated values of 
n are used to generate the MEM PDF using

pm =exp

(
−
0−

N∑
n=1


ngn(xm)

)
(18)

Computational speed was not of interest in this preliminary investigation; hence, for convenience
the MEM was coded using MATLAB. Minimization was achieved using the Nelder–Mead algo-
rithm, which requires only function evaluations. The simplex algorithm attempts to enclose the
function minimum inside a simplex (n-dimensional convex volume defined by n+1 linearly
independent points). The algorithm requires an initial guess for the simplex points (Lagrange
parameters) and then uses an iterative procedure of reflections, expansions and contractions to
reduce the size of the simplex until it is small enough to enclose the minimum with the desired
accuracy. Although alternative faster solution methods are available (e.g. conjugate gradient
methods), the simplex method was selected for the MEM code because it is robust for large-
dimensional problems and is suitable for non-smooth functions where the derivatives cannot be
found.

Phase-space resolution

The MEM code was tested by generating a multi-dimensional PDF using a Gaussian random
number generator, then taking the moments of this distribution, and using them as constraints in
the MEM code and comparing the results. Good correlation between distributions was achieved
although the peak value of the PDF was found to be sensitive to the phase-space discretization. This
issue needed to be quantified because we compared a PDF generated from the MEM solver, where
phase space was discretized using a uniform orthogonal Cartesian mesh, with an experimental
PDF is generated by binning discrete data.

This issue is demonstrated in Figure 1 that illustrates PDFs for a randomly generated multivariate
Gaussian data set of 104 points plotted using three different bin resolutions. Given that we know
exactly how the marginal PDFs should look for a given set of constraints, Figure 1 can be used
to determine an approximate number of data points per bin according to the ratio P/M2

d where
P is the total number of points in the data set (104) and where Md is the number of bins in each
phase-space dimension. The first set of PDFs shows a low level of detail, whereas the last set
resolves random fluctuations in the distribution caused by the limited sample size. For the case of
this simple Gaussian distribution a value of P/M2

d =25 (Figure 1(b)) was deemed appropriate and
this value was used as a guide for use in plotting PDFs for the spray data sets due to their similarity
with the Gaussian distribution. Figure 1 also illustrates the increase in PDF peak values as the bin
size is reduced, which is an additional factor for consideration when comparing the MEM results
with the original phase Doppler anemometry (PDA) data. This is shown in Figure 2, where the
MEM solver is used to compute normal JPDF on increasing finely discretized phase-space domain.
Figure 2(b) shows that the peak value, without interpolation, is sensitive to position of the peak
value relative to the mesh points and produces sensible peak values for Md�10 or more.
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Figure 1. PDFs of (i) droplet size and axial velocity, (ii) droplet size and radial velocity and (ii) axial
velocity and radial velocity generated using random Gaussian number generator �� =0, �u =1, �v =2,

�′2
� =3, �′2

u =4, �′2
v =5. Plotted for (a) P/M2

d =100, (b) P/M2
d =25, and (c) P/M2

d =6.25.

EXPERIMENTAL DATA

Two sprays are considered in this paper and are shown in Figures 3 and 4. The first spray is a
transient spray produced using a pressure swirl atomizer [41] for use in direct ignition spark ignition
(DISI) engines and is shown in Figure 3. The second spray was a steady-state electrostatically
charged kerosene spray [42] and is shown in Figure 4. The spray data sets were obtained using
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Figure 2. Variation of PDF peak with MEM bin resolution for a Gaussian input.

Figure 3. Photographic image of DISI pressure swirl spray.

the PDA method, measuring droplet size � and two components of droplet velocity (axial uz and
radial ur ) simultaneously.

The first spray was generated using a DISI pressure swirl injector spraying at 50 bar gasoline
pressure into air under atmospheric conditions for a relatively long injection event of 5ms. For
the purposes of this investigation it was necessary to obtain pseudo-steady data from the transient
history of the spray PDF at the positions chosen. To achieve this, transient data were processed
into time bins of duration 0.1ms to identify a pseudo-steady region as shown in Figure 5. PDA
data points outside this pseudo-steady region were discarded (t<2ms, t>5ms). This leads to a
45% reduction in the data set size, but cleaned up the shape of the raw PDF considerably, as
evidenced by Figure 6. In addition to this the variance within each bin was calculated and checked
for steady properties within this time interval.

For both data sets it was assumed that the velocity of the fluid at the particle position was
zero; therefore, particle relative and actual velocities are equivalent. This is a simplification and
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Figure 4. Photographic image of electrostatic kerosene spray.
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Figure 5. PDA sample rate f and mean quantities for DISI pressure swirl spray position PDA1A
(z=20mm,r =0mm). PDA data sorted using 0.1ms bin size.

while the particle dispersion due to the fluid turbulence, the present of the turbulence in the fluid
is absent. An alternative approach to obtaining the carrier fluid velocity would be to (a) assume
‘smaller’ particles are travelling at the local carrier fluid velocity and (b) interpolated in time to
the particle arrival time. This method would only be possible for the DISI spray, since no particles
in the charged spray follow the carrier fluid.

In total 12 PDA measurement points (six in each data set) were investigated. For brevity just
three of the interesting test cases are presented here—two points in the transient DISI pressure swirl
spray (PDA1A, PDA1F) and one point in the steady charged spray (PDA2A). The first position
in the pressure swirl spray PDA1A is axially located at a distance z=20mm from the injector.
The second position in the pressure swirl spray PDA1F is also at an axial distance of z=20mm
in the spray at a radial distance of r =7.5mm, which corresponds to a position in the edge of the
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Figure 6. Unfiltered (a) and filtered (b) PDFs for the DISI pressure swirl spray position PDA1A
(z=20mm,r =0mm). (i) Droplet size and axial velocity, (ii) droplet size and radial velocity and

(iii) axial velocity and radial velocity. Plotted using 30 × 30 grid (P/M2
d =25).
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Figure 7. Filtered PDFs for the DISI pressure swirl spray position PDA1F (z=20mm,r =7.5mm).
(i) Droplet size and axial velocity, (ii) droplet size and radial velocity and (iii) axial velocity and radial

velocity. Plotted using 37×37 grid (P/M2
d =25).

spray plume. Figure 7 shows the filtered PDFs for this position and in particular it highlights the
correlation between axial and radial velocities. The second spray investigated is the steady charged
hydrocarbon spray. The spray was produced using an atomizer with orifice diameter of 250�m and
a flow rate of 1.67ml/s to give a mean injection velocity of 34m/s (Re=5100 based on orifice
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Figure 8. PDFs for the steady charged spray position PDA2A (z=150mm,r =0mm). (i) Droplet
size and axial velocity, (ii) droplet size and radial velocity and (iii) axial velocity and radial velocity.

Plotted using 20 × 20 grid (P/M2
d =25).

diameter). The spray specific charge magnitude was 1.80C/m3. A single location in this spray is
considered PDA2A at a position of z=150mm and r =0mm. Figure 8 shows PDF contour plots
for this position. Of particular interest is Figure 8(i) that shows the non-linear drag relationship
between droplet size and axial velocity. The reason for the difference is the much larger range of
diameters present in Figure 8 and the inertia these larger drops retain. Note that the charged spray
data set was obtained under steady conditions; hence, no temporal filtering was required.

RESULTS: POSITION PDA1A

Figure 9 shows PDFs generated using MEM for position PDA1A in the DISI spray. The original
PDA-based PDFs (Figure 6(b)) exhibit distributions that to all practical purposes are Gaussian
in form. Comparison between the PDA and MEM PDFs would suggest that the PDFs can be
reproduced reasonably well with just second-order central moment constraints (mean and variance
of �,uz,ur ). Figure 9(b) shows MEM PDFs generated with the addition of third-order moment
constraints and Figure 9(c) shows PDFs with the further addition of all covariances. These PDFs
show minimal modification to the forms of the general shape PDFs, due to third-order and covari-
ance moments being negligible and confirm the underlying PDF shape is Gaussian.

In general the MEM PDFs tend to underestimate the peak values of each PDF. This is the
behaviour one may expect given that the MEM generates PDFs of least statistical bias. It is inter-
esting to note that the peak values tend to increase as additional moments are added. In Figure 9(c)
the peaks are approximately 5–12% higher than in Figure 9(a). A quantitative investigation of the
discrepancy in peak values between MEM and PDA was attempted but due to the limited sample
size for the PDA data it was difficult to isolate statistical noise from the PDF. Hence the magnitude
and position of the PDA maximum is highly sensitive the mesh resolution.

RESULTS: POSITION PDA1F

Figure 10 shows MEM PDFs for the second point PDA1F in the DISI pressure swirl spray
(edge of the spray cone). The PDA data (Figure 7) show correlation between all three variables
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Figure 9. MEM generated PDFs for the DISI pressure swirl spray position PDA1A
(z=20mm,r =0mm). (i) Droplet size and axial velocity, (ii) droplet size and radial
velocity and (iii) axial velocity and radial velocity. Generated using moment constraints

(a) to second order, (b) to third order, and (c) to third order with covariances.

(�,uz,ur ), most significantly between uz and ur . It is clear from Figure 11(a) that these PDFs
cannot be accurately reproduced with only mean and variance constraints. If the MEM is further
constrained by covariances 〈�uz〉, 〈�ur 〉 and 〈uruz〉, these correlations are reproduced as shown
in Figure 10(b). Figure 10(c) shows the effect of further addition of third-order constraints but due
to the symmetric nature of the original PDA data these constraints have negligible effect on the
overall form of the MEM PDFs. Once again Figure 10 shows that as more constraints are added
to the MEM solver, the peak PDF values increase towards the PDA peak values.
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Figure 10. MEM generated PDFs for the DISI pressure swirl spray position PDA1F (z=20mm,
r =7.5mm). (i) Droplet size and axial velocity, (ii) droplet size and radial velocity and (iii) axial
velocity and radial velocity. Generated using moment constraints (a) to second order, (b) to second

order with covariances, and (c) to third order with covariances.

RESULTS: POSITION PDA2A

Figure 11 shows MEM generated PDFs for the steady charged spray position PDA2A (Figure 8).
It is clear from Figure 11(a) that means and variances alone are not sufficient to reproduce the
form of the PDFs at this position. Using just these constraints the MEM fails to reproduce the
cross correlations and asymmetry features present in Figure 8. The Gaussian-like PDFs are far too

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:669–689
DOI: 10.1002/fld



EXPERIMENTAL INVESTIGATION OF A MAXIMUM ENTROPY ASSUMPTION 685

0 100 200 300 400 500 600

0

–1

–2

–3

–1

–2

–3

–1

–2

–3

–1

–2

–3

–1

–2

–3

–1

–2

–3

–1

–2

–3

–1

–2

–3

1

2

3

4

5

φ (μm)

u r (
m

/s
)

0.00442

0 5 10 15 20 25

0

1

2

3

4

5

u
z
 (m/s)

u r (
m

/s
)

0.0659

0 100 200 300 400 500 600

0

5

10

15

20

25

φ (μm)

u z (
m

/s
)

0.000512

0 100 200 300 400 500 600

0

1

2

3

4

5

φ (μm)

u r (
m

/s
)

0.00547

0 5 10 15 20 25

0

1

2

3

4

5

u
z
 (m/s)

u r (
m

/s
)

0.0709

0 100 200 300 400 500 600

0

5

10

15

20

25

φ (μm)

u z (
m

/s
)

0.00067

0 100 200 300 400 500 600

0

1

2

3

4

5

φ (μm)

u r (
m

/s
)

0.00434

0 5 10 15 20 25

0

1

2

3

4

5

u
z
 (m/s)

u r (
m

/s
)

0.0705

0 100 200 300 400 500 600

0

5

10

15

20

25

φ  (μm)

u z (
m

/s
)

0.000806

0 100 200 300 400 500 600

0

1

2

3

4

5

φ (μm)

u r (
m

/s
)

0.00546

0 5 10 15 20 25

0

1

2

3

4

5

u
z
 (m/s)

u r (
m

/s
)

0.0792

0 100 200 300 400 500 600

0

5

10

15

20

25

φ (μm)

u z (
m

/s
)

0.000376

(a)

(i) (ii) (iii)

(b)

(c)

(d)

Figure 11. MEM generated PDFs for the steady charged spray PDA2A (z=20mm,r =0mm). (i) Droplet
size and axial velocity, (ii) droplet size and radial velocity and (iii) axial velocity and radial velocity.
Generated using moment constraints (a) to second order, (b) to third order, (c) to third order with

covariances, and (d) to fourth order with covariances.
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diffuse and peak values are an order of magnitude below those of the PDA PDFs. Addition of
third-order constraints (Figure 11(b)) allows the MEM to reproduce the off-centre peaks; however,
the PDFs still fail to represent the forms of the original PDA data. Further improvements are gained
through the addition of covariance constraints, particularly for the �−uz PDF (Figure 11(ci)).
Further improvements are obtained when the MEM is constrained by fourth-order moments as
shown in Figure 11(d).

RESULTS: DISCUSSION

The measure of the error between the PDA and MEM distributions was calculated separately for
each position by summing the square of the differences at each location in the domain as shown
in the following equation:

ε= 1

M2
b

∑
m=1

(pPDAm − pMEF
m )2 (19)

where n is the number of ‘bins’ along each axis and hence M2
b points exist in the domain for each

JPDF. Figure 12 shows the error plotted as a function of the central moment order for the two
positions in the spray PDA1A and PDA1F.

Figure 12 shows a large reduction in the error when increasing the constraint order from one
to two. This is to be expected because this effectively changes the MEM distribution from and
exponential to Gaussian approximation to the ‘real’ PDA distribution. The trend as higher-order
moments are added is a reduction in the error. There are exceptions to this trend where the addition
of higher-order moments increases the error. This may due to the increased rigidity of the MEM
solution as additional moments are added. The MEM code attempts to find the distribution of
maximum entropy for a given set of constraints, and this is not necessarily the distribution that
most accurately reproduces the PDA data. Figure 12 also shows the effect of the adding cross
moments 〈�uz〉, 〈�ur 〉 and 〈uzur 〉. For low-order central moments the addition of these constraints
can significantly reduce the error.

Figure 12. Measure of the error ε, between the PDA and MEF distributions for increasing
order of central moments and with additional cross moments as indicated. (a) Position

z=150mm, r =0mm and (b) position z=120mm, r =40mm.
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CONCLUSIONS

The MEM has been proposed as a general closure method and evaluated for the specific case of the
particle acceleration terms present in the moment model. In order to assess the suitability of
the MEM experimental PDFs generated from two spray flows were compared with PDFs obtained
from the MEM.

Obtaining the PDF of maximum entropy requires solution of a set of highly non- linear constraint
equations. A numerical code has been developed, which is based on a Lagrange multipliers
formulation of the maximum entropy problem. Solution requires minimization of a single-valued
function of the Lagrange parameters and this is performed using a simplex minimization algorithm.

Comparisons between real PDFs obtained from experimental PDA data and MEM reconstruc-
tions show that the MEM method is capable of reasonable approximations of the multivariate
PDFs given appropriate and sufficient constraints.

Essentially, the accuracy of the MEMmethod scales with the number and the order of the moment
constraints. However, under certain conditions good estimates can be obtained with relatively few
low-order constraints.

The MEM-based PDFs tend to underestimate the peak values and it is necessary to constrain
the MEM further to enhance the accuracy of peak values. When considering the potential of the
MEM in the context of a moment closure model for multiphase flow models, it must be realized
that the suitability of the MEM is dependent on the nature of the flow. For simple isotropic flows a
simple turbulent viscosity-type model for the particulate phase would provide sufficient information
for constraint of the MEM and would allow the multiphase moment transport model to provide
relatively accurate predictions relatively quickly. More complex flows exhibiting cross correlations
and source terms that are not a function of transported moments require a more comprehensive
set of constraints. Under these circumstances a model that transports second-order moments of the
multiphase fluid would appear more suitable. However, where there is a large range of particle
relaxation time scales, even a second-order moment transport model is likely to fail to capture all
of the physics of the flow.

A quantitative assessment of the MEM proved difficult due to the limited sample size of the
experimental data and the lack of fluid phase information. Hence, it was not possible to obtain a
realistic MEM approximation to the 〈Ap,i 〉 term present in the moment equations.
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